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ABSTRACT
Measurements of clustering in large-scale imaging surveys that make use of photomet-
ric redshifts depend on the uncertainties in the redshift determination. We have used
light-cone simulations to show how the deprojection method successfully recovers the
real space correlation function when applied to mock photometric redshift surveys.
We study how the errors in the redshift determination affect the quality of the recov-
ered two-point correlation function. Considering the expected errors associated to the
planned photometric redshift surveys, we conclude that this method provides informa-
tion on the clustering of matter useful for the estimation of cosmological parameters
that depend on the large scale distribution of galaxies.

Key words: methods: data analysis – methods: statistical – techniques: photometric
– galaxies: distances and redshifts – large-scale structure of Universe

1 INTRODUCTION

In recent years, photometric redshift surveys have been pro-
posed as a way to extend large-scale structure studies to-
wards higher redshifts than it is possible using spectroscopic
surveys. These surveys observe a region of the sky through
a number of filters, and use the photometry obtained to de-
termine the redshifts, z, and spectral energy distributions
(SED’s) of galaxies. Using photometry instead of spectra al-
lows them to get much deeper, but the uncertainty in the
determination of redshifts is larger (Baum 1962; Koo 1986;
Connolly et al. 1995; Blake & Bridle 2005; Fernández-Soto
et al. 2001).

Two projects of this kind are COMBO-17(Classifying
Objects by Medium-Band Observations) and the ALHAM-
BRA (Advanced Large, Homogeneous Area Medium Band
Redshift Astronomical) survey. COMBO-17 (Wolf et al.
2003) surveyed a total area of ∼ 1 deg2 using a combina-
tion of 17 broad-band and medium-band filters. It provided
photometric redshifts for ∼ 25000 galaxies in 0.2 < z < 1.2,
with a typical error of ∆z ≃ 0.03. The ALHAMBRA sur-
vey (Moles et al. 2006; Moles et al. 2008; Fernández-Soto
et al. 2008), currently ongoing, will observe a total area of
∼ 4 deg2, in 16 1◦ × 0.◦25 strips. It uses 20 medium-band,
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equal-width filters covering the optical range, plus the stan-
dard J , H , Ks near-infrared filters. Moles et al. expect to
obtain photometric redshifts for ∼ 3 × 105 galaxies with
IAB 6 24.7 (60 per cent completeness level), zmed = 0.74,
and ∆z ≃ 0.015(1 + z).

These surveys can therefore provide us with large and
deep samples of galaxies. In order to study large-scale struc-
ture using these samples, one has to deal with large red-
shift errors. These redshift errors produce uncertainties in
the determination of distances to the galaxies, and hence
in their three-dimensional positions (Coe et al. 2006). This
uncertainty has to be added to the one produced by pecu-
liar motions of galaxies. The latter is important for spectro-
scopic surveys, while the former dominates the uncertainties
in photometric surveys.

In the present work, we focus on the two-point correla-
tion function, ξ(r). We study how it is affected by redshift
errors, and describe a method to recover its real-space value
from photometric redshift survey data. The method we use
is based in measuring the two-dimensional correlation func-
tion, ξ(σ, π) (where π is the line-of-sight separation, and σ is
the transverse separation), obtaining from it the projected
correlation function, Ξ(σ), and deprojecting it. This method
(outlined in Section 3) was first proposed by Davis & Pee-
bles (1983) as a way to avoid the uncertainties due to pe-
culiar velocities in spectroscopic surveys, and has been used
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successfully in subsequent analyses (e.g. Saunders, Rowan-
Robinson & Lawrence 1992; Hawkins et al., 2003; Madgwick
et al., 2003; Zehavi et al., 2004, 2005a).

Phleps et al. (2006) studied the correlation function of
galaxies in COMBO-17. They used Ξ(σ) as a measure of
real-space clustering, and compared it to the predictions of
halo occupation models. However, they did not attempt to
recover ξ(r) from their data.

We tested this method using data from the light-cone
simulation of Heinämäki et al. (2005). From the simulation,
we produced three mock photometric redshift catalogues,
corresponding to different accuracies in the determination
of redshifts. We then compared the correlation function ξ(r)
obtained by our method in each case to the real-space one,
computed from the original catalogue.

We describe the simulation and the way in which we cre-
ated the mock catalogues in Section 2. Section 3 describes
our method to calculate ξ(r) from the simulated data. In
Section 4 we present our results, and we summarize our con-
clusions in Section 5.

2 DATA USED

The catalogues used in this paper come from the light-
cone simulation of Heinämäki et al. (2005). They simu-
lated the distribution of dark matter haloes in a light-cone
covering 2◦ × 0.◦5 in the sky for a standard ΛCDM cos-
mology (ΩDM = 0.226, ΩB = 0.044, ΩΛ = 0.73, h =
H0/100 km s−1 Mpc−1 = 0.71, σ8 = 0.84). We used the full
output catalogue of the simulation, which contains haloes
with M > 7.14 ·1010 h−1 M⊙. We calculate the halo correla-
tion function in our analysis. Its behaviour should be similar
enough to the galaxy correlation function as to correctly as-
sess the validity of our method.

As in this work we are not interested in the evolution
of the correlation function with redshift, we restricted our
study to the redshift bin z ∈ [2, 3]. The volume considered,
in co-moving coordinates, is 864 h−1 Mpc long in the line-of-
sight direction, while its transverse section varies between
130 × 32 h−1 Mpc in its close end to 160 × 40h−1 Mpc in
its far end. The total volume is 4.56 × 106 h−3 Mpc3 and it
contains ∼ 180000 haloes. We chose that redshift interval for
two reasons. At lower redshifts, the light-cone is too narrow,
while at higher redshifts it contains too few haloes.

We generated three mock ‘photometric redshift cata-
logues’, corresponding to surveys with redshift uncertainties
∆z/(1+z) = 0.05, 0.015, 0.005. The first case (∆z/(1+z) =
0.05) corresponds typically to a survey using ∼ 5 broad-band
filters (see e.g. Fernández-Soto et al. 2001). ∆z/(1 + z) =
0.015 corresponds to the value expected from the ALHAM-
BRA survey (Moles et al. 2008). The last case, ∆z/(1+z) =
0.005, would correspond to a future survey using even more
filters. As an example, the PAU (Physics of the Accelerat-
ing Universe) survey project (Beńıtez et al. 2008) aims at
obtaining photometric redshifts for Luminous Red Galaxies
(LRG’s) with uncertainties ∆z/(1+ z) ∼ 0.0035 for z . 0.9.
As the uncertainty in photometric redshifts decreases for
high redshift galaxies (z & 2.5), when the Lyman-α wave-
length enters into the visible domain, it should also be pos-
sible, in principle, to get such a small ∆z in this case.

In creating our mock catalogues, we assumed Gaussian

errors for the photometric redshifts. This is not generally
the case for real surveys, due to the existence of a fraction
of ‘catastrophic’ redshift determinations, and to the mix of
different classes of objects with a variety of photometric
redshift errors. However, our assumption of single-peaked
Gaussian-distributed errors would be valid for a catalogue
selected to contain only “good” redshifts. This catalogue
could be built combining the selection of a given class of ob-
jects (e.g. LRG’s), with the use of some estimate of the red-
shift determination quality. The latter could be the knowl-
edge of the full redshift probability function (Fernández-
Soto et al. 2002), or the ‘odds’ parameter in the case of
Bayesian methods (Beńıtez 2000). Existing experience in-
dicates that, depending on the survey design, it is possible
to obtain “good” redshifts for objects down to magnitudes
mlim − 1 or mlim − 2, where mlim is the limit magnitude of
the survey.

At the end of Section 4.2, we assess the robustness of
our results to the presence of ‘catastrophic’ redshifts. We
consider catalogues with a fraction of such outliers of 5 per
cent. This is a conservative value, typical of broad-band,
non-optimized photometric redshift surveys, and it should
be significatively smaller in the case of “good” redshifts.
As an example, Ilbert et al. (2008) compiled a photometric
redshift catalogue for the COSMOS field, using 30 bands
ranging from the ultraviolet to the mid-infrared. They ob-
tained just 0.7 per cent of outliers when comparing their
bright sample (i+AB < 22.5) to spectroscopic redshifts.

To generate each mock catalogue, we modified the po-
sition of each point in the simulation following these steps:

(i) We calculated the ‘cosmological redshift’ of the object
from its real-space position.

(ii) We added to this ‘cosmological redshift’ the redshift
due to the peculiar velocity of the object. These peculiar
velocities of the haloes are provided by the simulation.

(iii) To simulate the expected redshift errors, we added a
random shift to the resulting redshift, following a Gaussian
distribution with variance equal to ∆z in each case. The
redshift obtained is the ‘observed redshift’ of the object.

(iv) We finally obtained the three-dimensional position
of the object corresponding to this ‘observed redshift’ and
included it in the mock catalogue.

This distortion process was carried out for all the points
in the whole cone of the simulation. The selection of the
points in the redshift bin z ∈ [2, 3] was performed using
the new ‘observed redshifts’, thus simulating the selection
process in a real survey.

Fig. 1 shows the distribution of haloes in the original
catalogue and in the mock photometric catalogues. The Fig-
ure shows the real space positions of haloes, not affected by
peculiar velocities, and thus does not show the finger-of-God
or coherent infall effects observed in spectroscopic surveys.
Due to redshift errors, structures which are clearly seen in
real space are smoothed and hardly recognizable in photo-
metric redshift data.

3 METHOD

The most widely used method to measure the correlation
function consists in comparing the distribution of points in
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Figure 1. The distribution of haloes in the four catalogues used: the original real-space catalogue, and the three mock photometric
catalogues. The distribution is shown projected on a longitudinal plane, and only 20 per cent of the points are shown, for clarity.

the data catalogue with a random distribution of points gen-
erated in the same volume. To make the comparison, one
calculates the number of pairs with separation in the range
[r, r+dr] between points in the data catalogue (DD(r)), be-
tween points in the random catalogue (RR(r)), and between
a point in the real catalogue and a point in the random cata-
logue (DR(r)). The estimator used in this work to compute
ξ(r) is (Landy & Szalay 1993):

ξ̂(r) = 1 +
(

NR

ND

)2 DD(r)

RR(r)
− 2

NR

ND

DR(r)

RR(r)
, (1)

where ND is the number of points in the data catalogue, and
NR is the number of points in the random catalogue.

However, this method can not be used when the studied
catalogue comes from a photometric survey. The large errors
in redshift and hence in the line-of-sight positions produce
two effects that have to be considered. On one side, these
random shifts in position erase correlations between points,
and hence ξ(r) measured according to (1) would be much
lower than the real ξ(r). On the other side, as the shifts are
only in the line-of-sight direction, isotropy of the distribu-
tion is lost. Correlation is only lost along the longitudinal
direction, but it is conserved in the transverse plane.

The method we used to recover real-space ξ(r) from the
mock photometric redshift catalogues is the same described
in Davis & Peebles (1983) and Saunders et al. (1992) for

spectroscopic surveys. It is based in the decomposition of
pair separations in parallel and perpendicular distances (π
and σ, respectively).

Let s1 and s2 be the measured positions (in ‘observed
redshift space’) of two points in the catalogue. We then de-
fine the separation vector, s ≡ s2 − s1, and the line-of-sight
vector, l ≡ s1 + s2, of the pair. From these, we now define
the parallel and perpendicular distances of the pair as

π ≡
|s · l|

|l|
, σ ≡

√
s · s − π2 . (2)

Once we have defined π and σ for each pair of points,
we can calculate the two-dimensional correlation function,
ξ(σ, π) in an analogous way to equation (1), substituting
the (r) dependence by (σ, π). From ξ(σ, π), we define the
projected correlation function as

Ξ(σ) ≡ 2

∫
∞

0

ξ(σ, π)dπ . (3)

As Ξ depends only on σ, and the angle between any pair of
points is small, it will not be affected significantly by redshift
errors, as these will mainly produce shifts in π.

Assuming that the real-space distribution is isotropic,
we can relate Ξ to the real-space correlation function, ξr, as

Ξ(σ) = 2

∫
∞

σ

ξr(r)
rdr

(r2 − σ2)1/2
. (4)
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This relation can be inverted, obtaining ξr in terms of Ξ as
the Abel integral:

ξr(r) = −
1

π

∫
∞

r

dΞ(σ)

dσ

dσ

(σ2 − r2)1/2
. (5)

Therefore, the method proposed to compute ξ(r) from
photometric survey data consists of the following steps. We
first obtain ξ(σ, π) from counting pairs of points in the data
and in the random catalogues. The projected correlation
function, Ξ(σ), is then obtained by integration of equa-
tion (3). Finally, the real-space correlation function, ξ(r), is
calculated from equation (5). Some problems arise in the nu-
merical integration of equations (3) and (5). Both integrals
extend formally to +∞. However, when computing them nu-
merically, we have to set finite upper limits, πmax and σmax.

In the first case, the value of πmax should be large
enough to include almost all the correlated pairs. However,
if it is too large, this would introduce extra noise in the
calculation.

When integrating equation (5), the upper limit σmax is
fixed, for pencil-beam surveys, by the maximum transverse
separation allowed by the geometry. The way we used to
evaluate (5) was that of Saunders et al. (1992). We interpo-
lated linearly Ξ between its values in each σ bin, and then
integrated (5) analytically. Taking Ξi as the value of Ξ for
the bin centred at σi, we have

ξ(σi) = −
1

π

∑

j>i

Ξj+1 − Ξj

σj+1 − σj
ln

(
σj+1 +

√
σ2

j+1 − σ2
i

σj +
√

σ2
j − σ2

i

)
.

Redshift errors will influence the result in two ways.
First, these errors change the apparent line-of-sight direction
l/|l| (see equation (2)), and through that, the apparent line-
of-sight distance π, and, most important, the perpendicular
distance σ. These errors grow with the redshift error and
with the width of the galaxy pair.

Another, and much stronger source of errors is the as-
sumption that the apparent distance in redshift space is the
real distance between two galaxies – this assumption is nec-
essary to obtain our basic integral relation (4). In case of
photometric errors, this assumption is hardly justified, but
we will see that the inverted correlation functions are close
to the real one, anyway. The errors caused by this assump-
tion grow with the redshift errors.

4 RESULTS

We tested the deprojection method to measure ξ(r) using
the mock photometric catalogues described in Section 2. We
applied the method described above to data from the three
mock catalogues, and obtained ξdep(r) in each case. These
were then compared to the real-space ξr(r) calculated from
the undistorted simulation catalogue using equation (1) di-
rectly.

The value used for the integration limit in equation (5)
was σmax = 130 h−1 Mpc. This is about 80 per cent of the
maximum transverse separation allowed by the geometry of
the light-cone. We used 32 bins in σ, logarithmically spaced
between 0.1h−1 Mpc and σmax.

We performed several tests to choose the appropriate

value for πmax, scaling it relative to the ∆z of the cata-
logue considered. The ξ(r) recovered increased with πmax

for values πmax . 3∆z, and converged to fixed values for
larger πmax. However, the noise also increased with πmax.
We adopted a conservative value of πmax ≃ 4∆z for our cal-
culations, in order to be sure to include all correlated pairs,
and not introducing too much extra noise.

To estimate the correlation function error and covari-
ance between bins in r, we used the jackknife method (see
e.g. Zehavi et al. 2005b). We divided our volume in 12 equal
sub-volumes, and constructed our jackknife samples omit-
ting one sub-volume at a time. We repeated the full cal-
culation of ξ(r) for each of these samples. Denoting by ξk

i

the value of the correlation function obtained for bin i in
jackknife sample k, the covariance matrix is then

Cij =
N − 1

N

N∑

k=1

(
ξk

i − ξ̄i

) (
ξk

j − ξ̄j

)
,

where ξ̄i is the average of the values obtained for bin i, and
N = 12.

4.1 Effect of redshift errors on ξ(σ, π)

As a first step in the calculation of ξ(r), we calculated ξ(σ, π)
for each mock catalogue. The results are shown in Fig. 2. We
also plot the ξ(σ, π) obtained in the real-space catalogue,
for comparison. Two effects of the redshift errors can be ob-
served. First, correlation decreases with the value of ∆z for
each catalogue. Also, there is a loss of symmetry of ξ(σ, π)
in these plots. In real space, due to the isotropy of the dis-
tribution, ξ(σ, π) has circular symmetry (seen as a ‘boxy’
symmetry in the logarithmic scale used). However, we can
see that when we calculate it for the mock photometric cat-
alogues, the distribution gets stretched along the π axis.

4.2 Tests of the deprojection method

When comparing our results for ξdep(r) with the real-
space ξr(r), we restricted the analysis to the range r ∈
[0.5, 30] h−1 Mpc. The lower limit is given by the way haloes
were selected in the simulation. They were selected using a
friends-of-friends algorithm, therefore if we had two haloes
at a too small separation, they would merge into a single
halo (Heinämäki et al. 2005). This prevents us from mea-
suring ξ(r) at such small distances. The upper limit was
fixed because of the geometry of the light-cone. As the max-
imum separation along the short transverse axis is between
30−40 h−1 Mpc, we can not trust our method beyond these
scales.

We measured ξr(r) directly from the real-space cata-
logue. In order to compare the real-space result to the one
obtained using our method in the mock photometric cata-
logues, we fitted ξr(r) by a third-order spline.

From ξ(σ, π), we obtained the projected correlation
function Ξ(σ) for each of the mock photometric catalogues.
In Fig. 3 we compare the function Ξ(σ) calculated for the
mock catalogues to the function obtained from the spline fit
to the real-space ξr(r), according to equation (4). The results
obtained for the ∆z/(1+z) = 0.005 and ∆z/(1+z) = 0.015
catalogues follow closely the real-space result. In the case
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Figure 2. The two-dimensional correlation function ξ(σ, π) obtained for the real space catalogue (top left), and for the mock photometric
catalogues with ∆z = 0.005(1+ z) (top right), ∆z = 0.015(1+ z) (bottom left) and ∆z = 0.05(1+ z) (bottom right). Contours are drawn
at ξ = 10, 3, 1, 0.3, 0.1, 0.03, 0.01, 0, with decreasing thickness. Contours at 0.1 and 0 are dashed.

of the ∆z/(1 + z) = 0.05 catalogue, however, Ξ(σ) falls be-
low the real-space result for r & 10 h−1 Mpc. This feature is
due to the fact that the value of πmax = 600 h−1 Mpc used
for that catalogue gets close to the line-of-sight length of the
simulation box used. As πmax scales with ∆z, this issue does
not affect the other catalogues.

Our final result for the deprojected correlation function,
ξdep(r) obtained from the mock photometric catalogues is
shown in Fig. 4, where we compare it to the real-space cor-
relation function, ξr(r).

To quantify the quality of the recovery, we used an ‘av-

erage normalized residual’, ∆ξ, as figure of merit, defined
as

∆ξ =
1

N

∑

i

∣∣∣∣
ξdep(ri) − ξr(ri)

ξr(ri)

∣∣∣∣ ,

where ri are the values of the bins in r where we measure ξ,
and N is the number of such bins considered.

Without prior knowledge of ξr(r) we could anyhow es-
timate the quality of the recovery calculating the quantity:

∆̂ξ =
1

N

∑

i

C
1/2
ii

|ξdep(ri)|
.
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Figure 4. Comparison between the deprojected correlation function, ξdep(r) (open circles), and the real-space correlation function, ξr(r)
(solid circles), for each mock photometric catalogue. The error bars plotted correspond to the diagonal terms in the covariance matrix,

C
1/2
ii .

We show the values of ∆ξ and ∆̂ξ obtained for the dif-
ferent mock catalogues in Table 1. We computed them for
different ranges in r, in order to assess the validity of the
method at different scales. From the values of ∆ξ we see that
we recover ξ(r) within a 5 per cent in the average for scales
r < 10 h−1 Mpc for mock catalogues with ∆z 6 0.015(1+z).
At larger scales, the deviations from ξr are larger (12−20 per
cent). In the case with the largest redshift errors, our method
is only valid for very small scales, r < 2 h−1 Mpc, where the

deviations are of a 7 per cent. We note that, in all cases

where the method is valid, ∆̂ξ > ∆ξ. Hence, the jackknife
method allows us to estimate the errors to an acceptable
precision. We remark, however, that for large values of ∆z
the jackknife error underestimates the real one as measured
from the residuals or compared to other ∆z values, specially
over medium scales (2 − 20h−1 Mpc).

Fig. 5 shows the covariance matrix for the real-space
calculation of ξr(r), and Fig. 6 shows it for the calculation of
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Table 1. Values of ∆ξ and ∆̂ξ obtained for the three mock photometric catalogues and for different scale ranges.

∆z
(1+z)

= 0.005 ∆z
(1+z)

= 0.015 ∆z
(1+z)

= 0.05

Range (h−1 Mpc) ∆ξ ∆̂ξ ∆ξ ∆̂ξ ∆ξ ∆̂ξ

0.5 < r < 30 0.07 0.17 0.09 0.26 0.36 0.67
0.5 < r < 2 0.04 0.05 0.04 0.10 0.07 0.15
2 < r < 10 0.05 0.09 0.05 0.16 0.28 0.16
10 < r < 30 0.12 0.40 0.20 0.57 0.79 1.89
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Figure 3. The projected correlation function obtained from the
mock photometric catalogues, compared to the real-space result.
The solid line corresponds to a spline fit to ξr(r), as explained
in the text. Small shifts have been applied along the σ axis, for
clarity. The feature observed at large scales for the ∆z = 0.05(1+
z) catalogue is due to the large πmax value used in that case.

ξdep(r) in each case. As the absolute values of the covariance
drop rapidly with distance, we show here the normalized
covariances

cij =
Cij√
CiiCjj

.

While the absolute values of the covariances grow with
the redshift error, and are always larger than the covariances
for the real-space correlation function, the structure of the
covariance matrix is different. While the real-space covari-
ances are large for almost all bin pairs, the covariance ma-
trices for photometric correlation functions are much closer
to diagonal. This is similar to the fact that the best esti-
mates of the correlation function are obtained integrating
over line-of-sight distances, even from spectroscopic redshift
catalogues (see, e.g., Zehavi et al. (2005a)).

In order to assess the robustness of the method to the
presence of ‘catastrophic’ redshift determinations, we re-
peated the calculation in catalogues containing 5 per cent of
such outliers. Outliers were created selecting points at ran-
dom in the original catalogue, and assigning them a random

r j
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Figure 5. The normalized covariance matrix (cij) of the corre-
lation function measured directly from the real-space catalogue.

distance within the range considered. Even with the conser-
vative assumption of a large fraction of outliers, our method
recovers ξ(r), although the values of ∆ξ are slightly larger in
this case, ranging from 5 to 13 per cent for r < 10h−1 Mpc
and ∆z 6 0.015(1+z). The result obtained for the catalogue
with ∆z = 0.015(1 + z), and containing 5 per cent of out-
liers is shown in Fig. 7. Similar results were obtained when
a fraction of the outliers were taken from a Poisson sample
within our volume. This case would reproduce the effect of
stellar contamination in the catalogue.

We performed an additional test of the deprojection
method using a realization of a segment Cox process, for
which an analytical expression of the correlation function is
known (Martinez et al. 1998). The results of those tests are
further explained in Appendix A.

5 CONCLUSIONS

We have shown the reliability of recovering the real-space
two-point correlation function from photometric redshift
surveys. We have used light-cone simulations to produce
mock catalogues that have been distorted by randomizing
along the line of sight the object positions following Gaus-
sian distributions with different variances similar to the as-
sociated nominal errors of the photometric redshift surveys
∆z/(1 + z).
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Figure 6. The normalized covariance matrices (cij) of the deprojected correlation function measured directly from the mock photometric
catalogues with ∆z = 0.005(1 + z) (top left), ∆z = 0.015(1 + z) (top right) and ∆z = 0.05(1 + z) (bottom).

The method used to recover the real-space correlation
function consists in obtaining the projected correlation func-
tion by integrating the two-dimensional correlation function
along the line of sight. The projected correlation function is
then deprojected assuming that redshift errors do not affect
transverse distances.

The deprojection method applied on the distorted mock
surveys provides quite satisfactory results for recovering the
real-space correlation function. We have quantified the qual-
ity of the recovering process as a function of the errors in
the photometric redshifts. Our method was able to recover
the real-space correlation function within a 5 per cent for
r < 10 h−1 Mpc from photometric catalogues with ∆z 6

0.015(1 + z). For larger redshift errors, the method is only
valid (within a 7 per cent) for smaller scales, r < 2h−1 Mpc.
Hence, our method allows the extraction of useful informa-
tion on the clustering of galaxies through the correlation
function. That information can be used for the estimation

of cosmological parameters based on data from photometric
redshift surveys.

We discuss now possible alternatives to the method ex-
posed here. A variation of the method would be to use a
smaller value of πmax in the integration of equation (3),
and multiply the result by a constant correction factor. This
would reduce the extra noise introduced by the integration
along a large range in the π direction. We found that, for
πmax ≃ ∆z, a correction factor of ≃ 2 works well in our sim-
ulation, generally reducing the error. However, the optimal
value is slightly different for each mock photometric cata-
logue. The main problem for the use of this method would
be the accurate determination of the correction factor in
each case, as any deviation from the optimal value would
introduce a bias in the result. The Gaussian approximation
used here is probably not so close to reality as to infer that
constant from our simulations.

Another possible alternative to the method described in
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Figure 7. The deprojected correlation function obtained for the
∆z = 0.015(1 + z) catalogue with and without outliers. The con-
tinuous line is the real-space correlation function.

this work could make use of the new estimator ω presented in
Padmanabhan, White & Eisenstein (2007). They proposed
ω as an alternative to the projected correlation function to
use with spectroscopic survey data. In principle, it can also
be applied to photometric redshift survey data, in a way
similar to the one presented here, but we did not investigate
further this possibility.
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APPENDIX A: TEST OF THE METHOD
USING A SEGMENT COX PROCESS

In order to test our method against an analytical prediction
for ξ(r), we used a distribution of points given by a segment
Cox process. This process is produced in the following way
(Mart́ınez & Saar 2002): segments of a given length, l, are
randomly scattered within a volume. Then, points are ran-
domly distributed along these segments. The lenght density
of the system of segments is LV = λsl, where λs is the mean
number of segments per unit volume. The density of the
point process is then

λ = λlLV = λlλsl ,

where λl is the mean number of points per unit length of
the segments. The correlation function of the point process
equals the correlation function of the system of segments
(Stoyan, Kendall & Mecke 1995), which is given by



10 P. Arnalte-Mur et al.

ξCox(r) =

{
1

2πr2LV

− 1
2πrlLV

, r 6 l

0 , r > l
. (A1)

We simulated a segment Cox process in the same vol-
ume considered in the rest of this work. The parameters
we used were l = 50 h−1 Mpc, λs = 2 · 10−4 h3 Mpc−3 and
λl = 4 h Mpc−1, which result in LV = 0.01 h2 Mpc−2 and
λ = 0.04 h3 Mpc−3. These parameters were chosen to ap-
proximately match the density of points and the behaviour
of ξ(r) in the haloes simulation. We considered the cata-
logue obtained directly from the segment Cox process as the
‘real-space’ catalogue. We created three mock ‘photometric
redshift catalogues’ following the same procedure and using
the same values for ∆z as described in Section 2 .

We calculated directly the correlation function for the
real-space catalogue according to equation (1). For the three
mock ‘photometric catalogues’, we used the method de-
scribed in Section 3 to obtain the deprojected correlation
function. The estimation of errors was performed using the
same jackknife method as described above for the haloes
simulation case. We checked that the errors obtained were
comparable to the variance of the results from several real-
izations of the Cox process. The comparison of our results
to the analytical prediction (A1) is shown in Fig. A1.

We quantify the quality of the recovery in the same way
as we did for the haloes simulation, using the quantities ∆ξ

and ∆̂ξ. In this case, we define ∆ξ as the relative devia-
tion of ξdep(r) from the analytical prediction ξCox(r) (equa-
tion (A1)). The values obtained are shown in Table A1.

We recover the real-space correlation function within
a 10 per cent for the ∆z/(1 + z) = 0.005 catalogue. In this
case, however, our method starts to fail at r ≃ 3−4h−1 Mpc
for the ∆z/(1+z) = 0.015 catalogue (this is seen as a larger
value of ∆ξ for this range, and as an increasing trend in
Fig. A1). When applying the method to the ∆z/(1 + z) =
0.05 catalogue, ξdep(r) is consistently higher than ξCox(r).
Although this bias could be an artefact of this particular
point process, it also means that the deprojection method
described in this work can not be fully trusted when it is
applied to catalogues with large redshift errors.

This paper has been typeset from a TEX/ LATEX file prepared
by the author.
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Figure A1. The correlation function measured in the real-space and the three mock ‘photometric’ catalogues obtained from a segment
Cox process (open circles), compared to the analytical prediction, equation (A1), for this process (solid line).

Table A1. Values of ∆ξ and ∆̂ξ obtained for the three mock photometric catalogues obtained from a Cox process, and for different
scale ranges.

∆z
(1+z)

= 0.005 ∆z
(1+z)

= 0.015 ∆z
(1+z)

= 0.05

Range (h−1 Mpc) ∆ξ ∆̂ξ ∆ξ ∆̂ξ ∆ξ ∆̂ξ

0.5 < r < 10 0.08 0.16 0.18 0.23 0.35 0.40
0.5 < r < 2 0.06 0.08 0.07 0.12 0.23 0.21
2 < r < 10 0.10 0.22 0.27 0.33 0.46 0.57


